

CLOUD COMPUTING
MASHUP

News-Stock trend analysis platform

Michael Leontieff-Smith
 N9455396

Table of Contents

Introduction ... 2

Service API’s Utilised .. 2

Service 1: News API... 2

Service 2: Google Natural Language API ... 3

Service 3: Alpha Advantage .. 3

Service 4: Microsoft Translation API ... 3

Service 5: MongoLab ... 3

Client-side Frameworks .. 4

Chart.js ... 4

Other Technologies Utilised ... 4

Pug Templating Engine ... 4

JQuery ... 4

Typescript ... 4

Nodemon .. 4

SASS .. 4

Use Cases.. 4
Use Case A [Uses Services #1, #2, #4, #5] ... 4
Use Case B [Uses Services #1, #2, #3, #4, #5] ... 6
Use Case C [Uses Services #1, #2, #3, #4, #5] ... 7

Technical Summary .. 8

Mock Data Source ... 8

Persistent Cache and Request Optimisation ... 9
Persistent Cache ... 9
Request Optimisation .. 9

Overall Representation ... 9

Client/Server Role Breakdown .. 10
Client .. 10
Server ... 10

Docker .. 10

Difficulties .. 11

Normalising data for Services ... 11

API Quotas .. 12

Fault Tolerance and Testing ... 12

Targeted Platform ... 12

Robustness ... 12

Test Cases ... 14

Appendix .. 15
Item 1: IDataSource Interface .. 15
Item 2: Mock Data Source ... 15
Item 3: Payload Formatting ... 16
Item 4: Test Verification .. 16

Introduction
The purpose of my News-Stock trend analysis platform mashup is to provide a web solution which
will allow users to search for (by providing a name and symbol) and monitor the performance of
publicly traded companies that they are interested in with respect to said company’s portrayal in the
media. Given the reactive nature of stocks and their fluctuations in value, the site will aim to expose
a key variable in company performance – the positivity or negativity of trending news articles that
directly criticize or praise a company’s motives, representatives or business dealings.

This will be achieved by contrasting company stock prices over a historical time period against the
positive or negative sentiments of headlining news articles published online over the same time
period. In theory, if a company is barraged by negative press, the negativity will likely translate into a
discernible drop in stock prices that simple graphing tools can convey. Therefore, the solution will
provide the ability for users to enter a company and have all trending articles pertaining to the
company analysed and the results graphed. Alongside this graph will be two others, one which will
present the stock prices over the same time period contrasted against the aforementioned
sentiment data and another which outlines the average sentiment for each news outlet who has had
their news articles processed.

The site will expand upon this by caching news article sentiments allowing for a historical record to
grow, which will add to the extensive stock and news article information that will be provided.

Service API’s Utilised
A multitude of services and user-facing frameworks culminate to deliver this experience, of
which are listed below.

Service 1: News API
https://newsapi.org/
The News API service allows for news articles to be queried for from a wide array of news
outlets. The callable endpoints allow for consumers to target trending news articles as
opposed to all articles as well as being able to define a string query further refine the
search.

This service will be the source of news articles for the application – the primary data that is
processing in the application. All other services are employed to either process or store this
data in some way.

Service 2: Google Natural Language API
https://cloud.google.com/natural-language/
A natural language processing service whose processSentiment endpoint affords consumers
the ability to process input-text and assign it a sentiment value between -1 and 1.

The App utilises this service to analyse the sentiments for each article the News API
response provides pertaining to a company. This result is then associated with the original
article and used as the first set of data for comparison.

Service 3: Alpha Advantage
https://www.alphavantage.co/
A service which provides stock information based upon a provided trading symbol e.g. TSLA.
Lots of control is given in the increments (days, weeks) and summarising of data.

This service will provide the second set of data, pairing with the sentiment output to
provide the experience. This data will undergo various transforms to allow it to be
compared to sentiments within the range -1<=y<=1, as stock prices cannot be negative, nor
will they likely be between 0 and 1.

Service 4: Microsoft Translation API
https://www.microsoft.com/en-us/translator/business/translator-api/
The translation API by Microsoft provides the ability to auto-detect and translate input text
to a defined language. Microsoft’s service was chosen as a Google service is already
employed and as such would infringe upon the already limited API quota.

This service is being used as Google’s natural language API only supports a limited number
of languages, and the news API returns articles in varied languages, so this service will be
used to normalise the data before being analysed. This allows for a more broader view of a
company’s perception to be analysed.

Service 5: MongoLab
https://mlab.com/
Given the costs to all of these services, and the desire to accumulate analysis results,
MongoLab will be utilised to cache translated articles and sentiment calculations to build up
a historical record of perceptions. Whenever a user makes a request, both articles from the
accumulating MongoLab cache and the News API are returned to bolster the richness of the
application experience.

Client-side Frameworks

Chart.js
Chart.js is a client-side charting library which will present the data to the user. The final
stage in the processing of data will be to align it with what this library expects.

Other Technologies Utilised

Pug Templating Engine
HTML pre-processor used to split up the pre-processed HTML into partials to drive reuse
and ease of understanding.

JQuery
Used to query the Application API’s and perform basic DOM operations

Typescript
A JS superset which forms the basis for all server and client side code. The application uses
the type system extensibly to create more maintainable, compile-time-error-checking code.
The compilation settings for this Application are configured to target ES2015.

Nodemon
Node monitor that’s paired with the Typescript Compiler to drive efficient development and
debugging through auto-compilation and serving of code.

SASS
CSS pre-processor to allow cleaner style rules.

Use Cases

Use Case A [Uses Services #1, #2, #4, #5]
As a hobbyist Investor looking to invest in the automotive sector, I would like to be able to
specify publicly traded companies that interest me and have the general reflection of the
Company (positive or negative) by news outlets conveyed to me so that I can make a quick
judgement on viability before committing.

Step 1: Specify publicly traded company
To achieve this, the user shall navigate to the home page of the app where they will be
presented with a form that they may enter their query as shown.

Given the “popularity” regarding Tesla and its CEO, the user decides to target their query
toward this company as a potential investment option.

Step 2: General reflection of company conveyed to me
The user shall then click “Get Company Data” to initiate the search, to which they will then
be presented with the following output after the loading spinner regresses.

The first row displayed to the user provides the general reflection data, where the user can
view the following information and make a quick judgement on viability.

• Left: Highest and Lowest stock price between the range of the last twenty trading
days. The User observes that the fluctuation space is quite large.

NOTE: the time frame is highlighted in a following user story.

• Middle: Each article found matching the defined company, both new and historical
and their associated sentiment/positivity rating. These results are graphed where
the X axis represents each article ordered by published date and the Y axis being the
associated sentiment value. With this response, the user observes that things aren’t
looking too good for Tesla, as the vast majority of sentiment ratings are below 0.

• Right: The most positive and most negative articles as determined by the application.
These match up with the data in the sentiment table. The user observes this output,
whereby they deduce that the most negative article alludes to thieves being able to
circumvent the security of Tesla’s and gain access, which is not very good from a
stock holder perspective, which is a role this user is considering.

Step 3: Conclusion
Using this information, the User concludes that things are looking a little grim for Tesla at
the moment, and instead decides to hold off until things stabilise.

Use Case B [Uses Services #1, #2, #3, #4, #5]
As a hobbyist Investor and market cynic, I would like this Application to be able to contrast a
Company’s performance in the media with its performance on the stock exchange,
displaying trends in both domains against each other in a normalised way to allow
connections and conclusions to be drawn as to the future performance of a company stock.

Step 1: Specify publicly traded company
To achieve this, the user shall navigate to the home page of the app where they will be
presented with a form that they may enter their query as shown.

Once again, Tesla’s tribulations provide the perfect subject for analysis.

Step 2: Displaying trends in both domains
When the search is executed and returns, the second row of the analysis page contains the
contrasting stock and sentiment values composited into a single graph.

Here the user is presented with both sets of data. The green represents the open price of
the stock for that day, scaled to the range -1<=y<=1 translating to the highest stock price for
the period being +1 and the lowest being -1. The red represents the average daily sentiment
score for news articles featuring that company. The transformation performed on the stock
data allows our User to directly compare the stock fluctuation with the sentiment values.
With this, the user notes that the increase in average sentiment values of headlining articles
between September 10 and September 14 directly correlates to the increase in share price
over that exact period.

Step 3: Conclusion
This information provides the User with insight as to the direction that the stock will
continue in.

Use Case C [Uses Services #1, #2, #3, #4, #5]
As a Hobbyist Investor and Conspiracy Theorist, I would like to be able to view the totally
bias nature of a particular news outlet with respect to a particular company, so that I may
know the favouritism or lack thereof expressed by available establishments.

Step 1: Specify publicly traded company
To achieve this, the user shall navigate to the home page of the app where they will be
presented with a form that they may enter their query as shown.

For this use case, the User searches for Google.

Step 2: Displaying outlet bias

The final row in the response presents the user with a breakdown of the number of articles
processed per institution (aqua) and the average sentiment expressed as a confidence
rating between 0% and 100% (purple).

Step 3: Conclusion
Using this information, our user concludes that Wired is an outlier due to their more-
positive-than-others portrayal for tech companies like Google and decides that they
shouldn’t be trusted as a source for reliable information regarding Google.

Technical Summary
During the ideation phase, the primary objectives of the application architecture were
outlined to provide a solid grounding for a robust, extendable application. These objectives
are encapsulated in the following components:

Mock Data Source
External services are the cornerstone of this application and as such are required in all
workflows of the application. These external services have an associated cost, and attempts
were made to reduce this cost during development whilst also allowing these services to be
replaced with mock data, allowing development to occur fluidly without a dependency on
these services.

This is facilitated through the definition of an IDataSource interface, included as Appendix
Item 1, whose concrete implementation is provided by both the ServiceDataSource and the
MockDataSource classes, the latter of which provides mock-data-returning implementations
of the costlier API calls. Once the Cache had been implemented in the app, implementation
work shifted from the mock to the real one as it was no longer needed.

Method Implementations for the ServiceDataSource are what you would expect, with calls
to the request library with relevant parameters. In the case of the MockDataSource, data is
either pulled from saved JSON responses from real executions or generated on the fly, such
as that included as Appendix Item 2.

Persistent Cache and Request Optimisation

Persistent Cache
It is obvious that an article needs only to be translated and sentiment-analysed once, as
redundant processing would be detrimental to the API quotas and performance/scalability.
Therefore, each article that is returned by the News API Service has an MD5 key generated
from the pre-translated title and published date. Then, a lookup is performed against the
cache to check if this article has been processed in the past. If so, it is fetched from the
cache and not processed, otherwise the end-to-end processing is performed, and the
output is saved to the cache upon completion so next time it may be requested more
cheaply.

Request Optimisation
Whilst an API may not charge per request, instead charging by the request size, it is still
beneficial to reduce the burden on bandwidth by optimising each request to be as effective
as possible. This is particularity the case with the Translation API, which has the potential to
process up to 25 records within a single request as opposed to just one. Therefore, as
exemplified in Appendix Item 3, effort is taken to ensure that the most effective means of
calling the third-party API’s is taken by packaging up the payload in the most effective
manner.

Overall Representation
These components described above, in addition to the surrounding architecture result in
the following architecture diagram, which outlines the characteristics of the service.

It foregrounds the interplay between the cache and fresh requests whilst also providing a
high level view of the mock data source and client interaction with the system.

Client/Server Role Breakdown
Summary of the above architecture diagram

Client
The data pertaining to a user’s query is requested and responded to through the App’s API
endpoints which are called client-side by JQuery’s AJAX methods. Both exposed endpoints
are POST requests, which are performed during the following points in the use cases:

Validation
To ensure the User’s input data is correct or supported, when the “Get Company Data”
action is performed a request is made to the Application for the stock data “/api/stocks”
pertaining to the given stock symbol. If stock data is not found, then an error is presented to
the user and no further requests are made.

Post-Validation Fetching
If the first API call is a success, the “/api/company” endpoint is then called with the name of
the company provided by the user. Again, if this query fails to find and articles, either new
or from within the cache, then an error is returned.

If both of these responses are successful, then the data from both is merged client-side for
display by the charting library.

Server
When the server receives a POST to one of its exposed endpoints, is it routed to the relevant
controller for the endpoint which in turn delegates the call to the relevant method(s) on the
data source. The data source to be used is determined by the Data Manager class, which
instantiates one or the other based upon a given parameter. The data source is an
abstraction which performs all third-party API calls, and upon resolve returns data to the
controller for cleansing and formatting before being returned to the client.

Docker
This application has been wholly containerised within docker to allow for seamless
deployments with little to no environment configuration. Below is the associated Docker file
for this project with comments that outline the intent for each step.

Difficulties

Normalising data for Services
One of the issues that was quickly realised revolves around the interplay between
endpoints. The News API is the primary source of information that is processed, and as such
that data needs to be in a state that is consumable by the other services that perform the
processing. The News API returns trending articles in multiple languages, with the content
not being tagged with its associated language. This is an issue as the Google Natural
Language API only supports a small subset of languages and feeding un-validated content to
it could cause un-foreseen errors.

To rectify this, either the articles whose languages are not supported could be discarded
from further processing (which would still require a service call to detect a language) or they
could simply be translated into a language that is supported. The latter option is the action
that was taken, adding another layer of overhead to the application.

API Quotas
The richness of the application is in part dictated by the amount of data that it can draw
from, and in the case of this application, each record (news article) undergoes a translation
and a sentiment analysis. Both of these services are rate-limited under free plans (former
measured by characters translated and the latter by request). To alleviate this issue, a cache
layer was added to the application whereby each article that is returned by the News API is
validated by a unique key (hash of the title and publish date) against a MongoLab store. If
the record exists, it is returned. If the record doesn’t exist, then it is processed in its entirety
then saved.

With this action, regardless of the number of requests by multiple users, an article is only
processed once, allowing the cost to be one with respect to request counts.

Fault Tolerance and Testing

Targeted Platform
The application has been tested against Chrome, Firefox and Safari which all report identical
functionality without variation.

Robustness
Given the extensive use of asynchronous operations and the dependence on external
services, this Application employs rigorous checking of the responses and subsequent error
handling through promise rejections, error call-backs and try-catch blocks. The checking of
errors comes in the form of truthy checks on responses and their properties to ensure the
data is in the expected form before proceeding.

All errors that are encountered by calling the service API’s are caught and have a
corresponding error string associated with them. These errors are expressed through
promise rejects, and if these are not supported by the libraries being used (such as request)
then the callback pattern is wrapped in a promise as shown below:

These errors are then thrown upwards through the use of another rejection whereby they
are caught by the API controller which packages up the error in the response and returns it
to the client.

If an error is encountered, the client will display it to the user if it is relevant. All technical
errors that have little user-facing meaning are generalised. Shown below as an example is
the ordered propagation of an error due to an invalid input hitting the News API endpoint.

ServiceDataSource
Performing the request and catching potential errors before propagating with a generalised
error.

API Controller
Accepting the error with the catch and returning as the response

Client-Side JS
Detecting the error in the response and rejecting so that the error may be picked up by the
validation code on the client.

Resulting User Feedback

NOTE: Normally this error would be caught by the client-side validation, however, this was
disabled temporarily to illustrate the point.

Test Cases

Test Case Status
Validation and Retrieval From Cache
[Appendix Item 4.A] PASS

Successful Fetch of Articles
[Appendix Item 4.B] PASS

Translation of Article Contents
[Appendix Item 4.C] PASS

Article Sentiment Analysis
[Appendix Item 4.D] PASS

Sentiment Chart
[Appendix Item 4.E] PASS

Composition Chart
[Appendix Item 4.F] PASS

Company Bias Chart
[Appendix Item 4.G] PASS

Client-Side Search
[Appendix Item 4.H] PASS

Error Handling: Invalid Company Name
[Appendix Item 4.I] PASS

Error Handling: Invalid/Unknown Company Symbol
[Appendix Item 4.J] PASS

Appendix
Item 1: IDataSource Interface

Item 2: Mock Data Source

Item 3: Payload Formatting

Item 4: Test Verification

Item A.1
To verify sole-retrieval from the cache, queries with the same company and symbol were
performed multiple times so that the News API would only return re-processed articles. To
confirm this, logging was added within the request and as is evidenced in Item A.3 the
request succeeds with data, if the cache had not been functioning, then the request would
safely return an error.

Item A.2

Item A.3

Item B.1
API response proving that articles are fetched correctly

Item B.2
Output shown to the user

Item C.1
A newly detected article that has yet to be translated, this was acquired by break pointing
the application as no original-language versions of articles are recorded.

Item C.2
After execution, the query was run again and the corresponding article to the one above
was found in its translated form, confirming that the translation service is working as
intended.

Item D.1

Item E.1

Item F.1

Item G.1

Item H.1
Upon search, a loading spinner presents itself for the entirety of the asynchronous action.
On completion the results are returned as evidenced repeatedly by the previous test cases.

Item I.1

Item J.1

