

TwitterFollow Cloud Project
CAB432: Cloud Computing

Michael Leontieff, n9455396
Anneke Kotze, n9451013

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Introduction 3
Use Cases 4
Architecture & Services 4
Development Phases 5

Architecture & Implementation 5
High Level Overview 5
Architecture Components 6

Twitter Stream 6
Single running stream per Application 6
Filters cannot be altered whilst stream is open 6
Pre-Cache Data Alterations 6

In Memory Cache 6
Stream Caching 6
Application State Management 7

Language Classification 7
APIs & Services 8

Twitter Stream 8
Natural Library for Node 8
Redis Cache/DataStore 9

Deployment process 9
VM Images 9

Redis Cache 9
Application Node 9

Azure Template Configuration 10
Template 10

Microsoft.Network/publicIPAddresses 10
Microsoft.Network/loadBalancers 11
Microsoft.Network/networkSecurityGroups 11
Microsoft.Resources/deployments 11
Microsoft.Compute/virtualMachineScaleSets 11
Microsoft.Insights/autoscaleSettings 11

Parameters 11
Cloud Init 12

Scaling & Performance 12
A Typical Worker Node 13
Most Taxing Operation 14

Scaling Methodology Chosen 14

1

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

User Count 14
Filter Count 14
Filter Popularity 14

Scaling Situations 14
Minimal Load - Single Node Operation 15
Medium to High Load - >1 Node Operation 15

Workload-Request Load Correlation 15
Scaling Graphs 16

Testing & Limitations 16

Future Extensions 18

Appendices 19
Appendix A: User Guide 19
Appendix B: Adding a Search Filter 20
Appendix C: Removing a Search Filter 21
Appendix D: Adding Multiple Search Filters 22
Appendix E: Removing Multiple Search Filters 23
Appendix F: Detail View 24
Appendix G: Stopping Data Update 25

2

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Introduction
The intention of this application is to provide a user with the ability to search for and track a
selection of manually entered hashtags or search terms on Twitter. The resulting data will then
be displayed in two forms. The primary form of display is a summary bubble graph (a
screenshot is below) that will show the general sentiment and popularity of a given query in
comparison to other queries.

Figure 1 - Screenshot of Bubble Graph

The second form of display is on an individual search term level. This will allow the user to
select one of the search terms and then see further information for that query term. This extra
data will include a stream of tweets that is added to as more tweets are processed, along with
the results of the sentiment analysis done on them. An example of this is shown below:

Figure 2 - Screenshot of Detail View

3

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Use Cases
The primary use case is when a user wishes to determine the general sentiment and popularity
of a number of terms in a specific category. An example is supermarket brands. The user could
enter the terms Coles, Woolworths, Aldi, Foodworks, and IGA, and then they will see the overall
sentiments and number of tweets about each brand. This would allow the user to see which
brands are more commonly tweeted about and whether or not the tweets are generally positive
or negative. As a secondary use case, a user could also enter a number of terms that are less
closely linked in order to compare general popularity of different things, such as football or rugby
compared to e-sports, or comparing different holidays (as seen below).

Figure 3 - Example Use Case

Architecture & Services
The general architecture of the application is shown in the diagram below.

Figure 4 - Architecture of Application

4

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

The application consists of an Angular UI served through a browser, statically served by a Node
server using the Express framework, which uses a Redis in-memory cache for data storage.
The Node server communicates with the Twitter API in order to find tweets matching given
search terms, which are then saved for later access in the Redis cache. When requested by the
UI, each server that receives a request via the load balancer will pull a number of records from
the cache for processing. Each tweet is processed using the Natural library for Node in
combination with a pre-trained model to ascertain the sentiment associated with that tweet. The
UI makes use of d3.js, a data display javascript library, to display a bubble graph representing
the summarised sentiment and total number of processed tweets returned by the Node server
for each search term.

Development Phases
The development approach taken was to divide the application into two sections, the UI and the
server, and develop these independently of each other. Even though the development was done
independently, it was a priority to ensure that the entire application was able to be dockerized at
all times. This division of development was chosen as the only interaction between the two
components is via an API on the server. This also made adding a load balancer a simpler
operation. Once the UI and server were completed and able to communicate in a locally running
docker container, the scaling could be implemented. This is a required step, as each instance in
the scale set will pull and run the image so increase the level of automation in the dev pipeline.
Testing was undertaken throughout the project in order to maintain a higher quality application
and to reduce potential issues towards the completion of the project.

Architecture & Implementation

High Level Overview
In summary, the application consists of an Angular front end, which is statically served by a
node server that uses the Express Framework. This UI interfaces with a collection of /api/ REST
endpoints exposed by our application to allow the client to initiate and terminate stream
processing. This is in addition to supplying the resulting, processed data for display by the
graphing library.

Once a stream is initiated, the client repeatedly polls the server for updates, whereby each
update request will process a chunk of tweets stored in the cache. This results in the load being
directly tied to a request, which itself is stateless and may be directed to any node in a scaling
group to be resolved without issue.

5

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Architecture Components
This application is a composition of services that deliver the defined use case, these
components are described below.

Twitter Stream
The Twitter Stream is the data source of the application, of which all of the processing hinges
on. A connection to the stream exhibits many characteristics that need to be catered for in the
application architecture, of which are described with mitigation below:

Single running stream per Application
An application may only have a single running stream, which in turn requires the application to
maintain a state of active stream connections so that nodes don’t initiate connections if one is
already running. Without these measures, access to the Twitter stream may be interrupted.

Filters cannot be altered whilst stream is open
The filter supplied to a stream connection cannot be changed whilst running, meaning that if a
user changes their query, existing streams need to be terminated before be re-initiated with the
updated parameters. This extends the requirement for a shared stream state, with the
requirement for a node to be able to request the termination of a stream that is currently running
(either on that node or another within the scaling group).

Pre-Cache Data Alterations
Before being stored in the cache, each tweet is stripped of meaningless data and serialised as a
JSON string for storage. This also primes the data for the language classification phase.

In Memory Cache
The In-Memory cache takes the form of the persistence pillar in the application, and provides
two main functionalities to support the experience.

Stream Caching
To support the torrent of data outputted by the Twitter stream, the application employs an
in-memory cache to facilitate flow control for the downstream processing that is performed on
the data. This allows all filter-matching tweets to be processed on-demand, allowing the
language processing to be performed on tweets after they have been returned by the filter.
In-memory was chosen as opposed to alternatives as it allows for higher read/write thresholds
to better support the consuming nodes and the incoming stream.

6

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

A second key reason is to facilitate horizontal scaling, as the in-memory cache provides a
common point of call for data to be used by all nodes in a scaling group.

Application State Management
The requirements for horizontal scaling introduce complexities that are in part tackled by the
in-memory pillar. Application State Management refers to the need to maintain a shared state
across the nodes so that they may perform their operations without stepping on each other. An
example of this is the storing of the twitter stream state, whereby any node may determine if a
stream is running, and if so it’s current state, that being either ​RUNNING​,​TERMINATING or
TERMINATED​.

With the ability for each node to poll the shared state, this allows any node to initiate and
terminate a connection to the Stream, without knowing what node the stream resides on. A
diagram of this is supplied below.

Figure 5 - Shared State Operation Diagram

Language Classification
To deliver the use case described, the incoming data from the Twitter Stream needs to undergo
classification to dictate the polarity of the tweet. This is performed against a pre-trained model -
a model which has been constructed from a pre-classified data set of tweets sourced online.

The pre-trained data exhibits three potential labels: Positive, Negative and Neutral with the
incoming tweets from the stream being classified into these groups using the Naive Bayes
classifier as provided by the Natural library for NPM.

7

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

APIs & Services
Each component of the Application, as described above is underpinned by a Service that
provides the core functionality of the component. Details of these Services are described below:

Twitter Stream
Link: ​https://www.npmjs.com/package/twitter

The Twitter stream is consumed through the use of the Twitter NPM library, which in turn is
wrapped in a singleton and instantiated upon request. This instance creates a connection to the
statuses/filter ​stream with an input configuration supplied by the initiating request.

Figure 6 - Twitter Stream Sample Code

Natural Library for Node
Link: ​https://www.npmjs.com/package/natural

To process the incoming stream data, text classification will be applied against the data using
the Natural library for Node. This module allows for the parsing and training of pre-classified
data which may be used as a model to label unclassified text.

8

https://www.npmjs.com/package/twitter
https://www.npmjs.com/package/natural#sentiment-analysis

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Redis Cache/DataStore
Link: ​https://redis.io/

Redis was chosen as the underlying technology to supply the In-Memory Cache. This is due to
the data structures it supports and its cache-like behaviour. The latter of which complemented
our requirements for operations like popping data from the cache, and associating an expiry to
each record to prevent staleness.

Deployment process
In keeping with the DevOps methodology, the deployment process has been streamlined to be
largely automated, allowing for quick rollouts of functionality and bug fixes. This works in
tandem with the requirements for deploying scaling groups, such as generalised images and
Cloud Init configuration.

VM Images
To deploy this application in a functioning state, two VM images are required. The process of
creating each image involves provisioning a new VM, installing the software pertaining to the
role of the VM in the architecture and then generalising and imaging the VM for later use. The
Images featured in our deployment are as follows:

Redis Cache
This image contains a pre-compiled and installed redis service, which was installed within the
/etc/ directory so as to persist after the user deprovisioning process performed during image
creation.

Application Node
This image contains a docker installation, which is used to pull a particular containerised version
of the application from docker hub and then run the container with arguments sourced from the
Cloud Init scripts.

9

https://redis.io/

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Azure Template Configuration
To manage the abundance of configuration that needs to be performed, all configuration
pertaining to scale rules, health probes and security are expressed through both a template and
parameters JSON file.

Template
The template is the schema for all of the resources required by the application. The template is
a high level view of the deployment and is devoid of fine-grained parameters such as instance
counts and scaling CPU boundaries. To alleviate errors, the template.json file contains a
variables object, which allows for a single source for application-specific identifiers that in turn
will reduce errors.

Figure 7 - Template snippet

The template contains three primary fields of interest: ​parameters​; which state what
configuration settings can be substituted in and their data type, ​variables​; the common points of
reference mentioned earlier and finally ​resources​; which summarises each resource that is
required for deployment. These resources types, roles and configuration are listed below:

Microsoft.Network/publicIPAddresses
Manages public IP’s for the load balancer and for worker nodes during development testing. In a
production environment, worker nodes will not be directly exposed to the web.

10

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Microsoft.Network/loadBalancers
Describes the backend pools and health probes required for automated scaling.

Microsoft.Network/networkSecurityGroups
States the ports exposed to the web, including SSH, HTTP and DNS to resolve docker pull
issues in the latest Ubuntu LTS.

Microsoft.Resources/deployments
Describes the virtual network and subnets required for the application

Microsoft.Compute/virtualMachineScaleSets
Describes the scale set, including the network profile and coordination with supporting
resources.

Microsoft.Insights/autoscaleSettings
Describes the metrics to be monitored and the min/max scaling.

Parameters
With the template describing the dependencies of the service, the parameters contain the
deployment-specific configuration. This abstraction allows the deployments variables to be
manipulated without dealing with the clutter of the resource schema.

This is represented through a collection of key, object-value pairs that associate a value with a
variable used in the template.json file.

Figure 8 - Parameters snippet

11

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Cloud Init
Having created VM Images with the required software for the application, Cloud Init is used to
start the relevant services on the instances after provisioning has succeeded. Examples of
these scripts are included in the appendix.

Figure 9 - Parameters snippet

Scaling & Performance
The cloud-oriented architecture of the application is designed to address multiple scaling
situations, described below is the high-level infrastructure diagram, which exhibits the
worker/web nodes with respect to the memory cache and the requesting user.

12

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Figure 10 - Infrastructure Diagram

A Typical Worker Node
Load balancing is delivered through the horizontal scaling of the nodes within the Azure
auto-scaling group. Each node represents a complete replication of the application, both
front-end and /api/ endpoints. When these nodes are combined with a connection to the
memory cache, they allow for a functioning application.

The replication is intentional, as it allows for any request, whether that be regarding client-side
page load or api endpoints to be resolved by any node in a stateless manor. No vertical or
horizontal scaling is applied to the memory cache currently, as the load imparted upon the
cache is too insignificant to warrant it (<5% CPU load on default VM with app at highest cache
read/writes).

13

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Most Taxing Operation
The most demanding operation within the application is the classification of the cached data.
Therefore, the goal of the application architecture is to revolve the scaling component around
the need to distribute this work to any number of nodes without issue.

With an active stream running against a single trending topic, the CPU load imparted upon a
single B1MS instance is roughly 50%. With the option to add up to 250 filters the potential for
scaling is significant.

Scaling Methodology Chosen
Is was decided that automated scaling offerings provided by Azure would best fit this application
they perfectly align with the request-based load architecture that is utilised.

This is because the load is driven by multiple factors, factors those combined scenario make for
a very unpredictable load situation that cannot be solved through predictive, non-reactive
scaling. These factors are as follows:

User Count
Each user of the application will be initiating a constant stream of polls for updates, and
therefore the load will scale with respect to the user count.

Filter Count
The load generated by an individual will also vary, based upon the number of filters being
queried for. Queries with more filters aren’t necessarily more intensive however, as popularity
may vary.

Filter Popularity
Each filter being processed may not impart the same processing cost, in the case of less
popular topics the interval polling will process the cache faster than it can be populated. In
addition, the results yielded by a filter will fluctuate based upon current events and other factors.

For example, it was observed in testing that the trending filter ​Halloween was netting thousands
of tweets per minute on the 31st, however, a couple of days later the popularity had slumped to
only several hundred in the same time period.

Scaling Situations
To address these characteristics, several scaling situation needs to be accounted for by the
application and underlying architecture in order to deliver a consistent user experience.

14

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Minimal Load - Single Node Operation
In single node operation, the scaling group contains a single node which addresses all requests
by incoming clients. Given there’s only a single node, it will both supply the static client-side
content, host the stream connection, push results to cache and finally perform text classification
upon the data for return to clients.

Medium to High Load - ​>1​ Node Operation
A node exhibits the same characteristics in >1 node operation as if it were a singular instance,
being able to deliver the entire experience. The application architecture has been tailored to this
situation, and as such the architecture allows for even distribution of work loads across all
nodes in the group. This is achieved in the following ways.

Workload-Request Load Correlation

The core of the applications scalability is the idea that any /api/ endpoint request may be
resolved by any node in the application. This affords the application the ability to leverage the
load balancer to distribute requests to these endpoints and have any node respond to it without
issue through this process:

1. Client will repeatedly poll endpoint
2. Each request will pop an arbitrary number of tweets from the cache, classify them, and

update the summary object stored on the cache with the results.
3. When this is complete, the summary object is returned.

Therefore, processing of the tweets is solely driven by client requests, allowing for severe
cost-savings regarding infrastructure as it is the clients that initiate and maintain the
behind-the-scenes classification of data.

15

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Scaling Graphs
The following graph represents the load imparted upon a scale set and its subsequent nodes
throughout a 45 min period. This confirms that the methodology selected regarding scaling is
functioning correctly for our application.

Figure 11 - Scaling Graph

Testing & Limitations
As part of ensuring a high-quality application, a large amount of testing was required. This
confirmed the functionality was correct and provided through a usable and intuitive user
interface. A summary table of the testing undertaken is below:

Test Case Expected Result Actual Result

Adding a search filter The new filter should show up
in the result graph

The graph shows the new
filter once the user presses
‘Update’ and after the next
server poll returns
See Appendix B

Removing a search filter The old filter should be
removed from the result
graph

The graph no longer shows
the removed filter once the
user presses ‘Update’ and
the next server poll occurs
See Appendix C

Adding multiple search filters Each new filter should be
added to the graph all at once

The graph shows all new
filters added once the user

16

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

after the user presses
‘Update’

presses ‘Update’ and the next
server poll occurs
See Appendix D

Removing multiple search
filters

Each removed filter should be
removed from the graph all at
once after the user presses
‘Update’

The graph shows the
remaining filters once the
user presses ‘Update’ and
the next server poll occurs
See Appendix E

Selecting a filter to see more
detail

The graph should be hidden
and a new view should open
that shows a selection of
current tweets and their
sentiment

The graph view is hidden and
the new view with processed
tweets & sentiments opens
after the next server poll
See Appendix F

Stopping the update of data The data should stop being
updated and no more
requests should be sent

The graph view is cleared
after the user presses ‘Stop’
See Appendix G

Overall, the results of the test matched the expected outcome well. There were some limitations
in regards to server-polling. Most notably, the frequency with which this can be done is less than
ideal. However, if this frequency is increased it is far more likely for the user’s browser tab or
window to become unresponsive due to the sheer frequency of requests sent. This is because
each time the server is polled for updated data, an individual request is sent for each search
term. This is required as returning all possible data for each API request would result in an
unsustainable load on a single server as it would need to process all data currently stored in the
in-memory cache. Splitting each request also allows for load-balancing to be done more
effectively.

The main compromise made in the architecture of the application is the reliance on a single
stream that needs to be killed and recreated as soon as the filters are changed. This is less
efficient and increases the risk of multiple users dramatically impacting performance.
Unfortunately, the alternative approach of using Twitter REST endpoints would have resulted in
in an excessive number of duplicate requests being made, with a higher financial cost per
request, making it infeasible for the purposes of this application.

The main impact of this compromise on the user experience is the requirement for the user to
press the ‘Update’ button (as can be seen in Figure 8 below) before the stream will be updated
with the new search terms. This results in a slightly less responsive application, however it
ensure more accurate results are displayed and assists in keeping the behaviour of the
application consistent, even when the user performs many actions quickly.

17

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Figure 11 - Screenshot of Search Section

Future Extensions
The functionality provided by the application is sufficient for the primary use case of comparing
the popularity of hashtags and search terms to each other. However, there is ample room for
improvement and extension of features. Some examples of these extensions are: storing the
gathered data in a database rather than a temporary data structure to allow the user to see
changes in popularity and overall sentiment over time rather than only for the duration of the
cache; the ability to group search terms under a common heading and compare to other groups
of search terms, for example comparing ‘sports’ to ‘e-sports’, with sub-filters of ‘football’ and
‘rugby’, and ‘DOTA’ and ‘League of Legends’ respectively; or, the ability to do historical analysis
of a specific search term to see changes over the history of Twitter, not just the lifetime of the
application’s datastore.

18

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Appendices

Appendix A: User Guide
In order to deploy the application, follow these steps:

1. Log into azure-cli and navigate to the “deployment” directory of the repository
2. Execute the “deploy-memory-cache.sh” script to deploy the redis VM.
3. Adjust the parameters.json file to contain the redis connection information then run the

“deploy-scale-set.sh” script.
4. Once deployment completes, access the application through the IP address of the Load

Balancer.

19

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Appendix B: Adding a Search Filter
The user entered ‘dog’ into the search field

The user pressed Enter

The user pressed the ‘Update’ button
There was a 1 second wait

The graph was displayed

20

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Appendix C: Removing a Search Filter

The user pressed the ‘x’ on the search term

The user pressed the ‘Update’ button
There was a less than 1 second wait

The graph was cleared

21

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Appendix D: Adding Multiple Search Filters
The user entered the search terms into the field

The user pressed Enter

The user pressed the ‘Update’ button
There was a 1 second wait

The graph was displayed

22

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Appendix E: Removing Multiple Search Filters

The user pressed the ‘x’ on the search terms to remove

The user pressed the ‘Update’ button
There was a 1.5 second wait

The graph was updated

23

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Appendix F: Detail View

The user selected ‘halloween’

There was basically no delay
The list continued to update with tweets processed
The user clicked on ‘halloween’ again

The graph was redisplayed

24

CAB432 2018 S2 Michael Leontieff, n9455396
Cloud Computing Anneke Kotze, n9451013

Appendix G: Stopping Data Update

The user pressed the ‘Stop’ button
There was a 2 second delay

The graph was removed

25

